Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.782
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542360

RESUMO

Different gut microbiota-derived metabolites influence cardiovascular function, and, among all, the role of indole-3-propionic acid (IPA), from tryptophan metabolism, shows controversial effects. The aim of this study was to evaluate its role in endothelial dysfunction. IPA effects were studied on bovine aortic endothelial cells (BAE-1). First, IPA cytotoxicity was evaluated by an MTS assay. Then, the levels of intracellular reactive oxygen species (ROS) were evaluated by a microplate reader or fluorescence microscopy with the CellROX® Green probe, and nitric oxide (NO) production was studied by fluorescence microscopy with the DAR4M-AM probe after acute or chronic treatment. Finally, immunoblotting analysis for endothelial nitric oxide synthase (eNOS) phosphorylation (p-eNOS) was performed. In BAE-1, IPA was not cytotoxic, except for the highest concentration (5 mM) after 48 h of treatment, and it showed neither oxidant nor antioxidant activity. However, the physiological concentration of IPA (1 µM) significantly reduced NO released by adenosine triphosphate (ATP)-stimulated BAE-1. These last data were confirmed by Western blot analysis, where IPA induced a significant reduction in p-eNOS in purinergic-stimulated BAE-1. Given these data, we can speculate that IPA negatively affects the physiological control of vascular tone by impairing the endothelial NO release induced by purinergic stimulation. These results represent a starting point for understanding the mechanisms underlying the relationship between gut microbiota metabolites and cardiometabolic health.


Assuntos
Microbioma Gastrointestinal , Propionatos , Doenças Vasculares , Animais , Bovinos , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Triptofano/metabolismo , Doenças Vasculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Indóis/farmacologia , Indóis/metabolismo
2.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474504

RESUMO

The gut microbiota produces a variety of bioactive molecules that facilitate host-microbiota interaction. Indole and its metabolites are focused as possible biomarkers for various diseases. However, data on indole metabolism and individual metabolites remain limited. Hence, we investigated the metabolism and distribution of indole, indolin-2-one, isatin, and 3-hydroxyindolin-2-one. First, we orally administered a high dose of indole into C57BL/6J mice and measured the concentrations of indole metabolites in the brain, liver, plasma, large and small intestines, and cecum at multiple time points using HPLC/MS. Absorption in 30 min and full metabolization in 6 h were established. Furthermore, indole, indolin-2-one, and 3-hydroxiindolin-2-one, but not isatin, were found in the brain. Second, we confirmed these findings by using stable isotope-carrying indole. Third, we identified 3-hydroxyindolin-2-one as an indole metabolite in vivo by utilizing a 3-hydroxyindolin-2-one-converting enzyme, IifA. Further, we confirmed the ability of orally administered 3-hydroxyindolin-2-one to cross the blood-brain barrier in a dose-dependent manner. Finally, we detected upregulation of the CYP1A2 and CYP2A5 genes, confirming the importance of these cytochrome isoforms in indole metabolism in vivo. Overall, our results provide a basic characterization of indole metabolism in the host and highlight 3-hydroxyindolin-2-one as a potentially brain-affecting indole metabolite.


Assuntos
Isatina , Microbiota , Camundongos , Animais , Camundongos Endogâmicos C57BL , Indóis/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 275, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530470

RESUMO

Prenylation plays a pivotal role in the diversification and biological activities of natural products. This study presents the functional characterization of TolF, a multiple prenyltransferase from Tolypocladium inflatum. The heterologous expression of tolF in Aspergillus oryzae, coupled with feeding the transformed strain with paxilline, resulted in the production of 20- and 22-prenylpaxilline. Additionally, TolF demonstrated the ability to prenylated the reduced form of paxilline, ß-paxitriol. A related prenyltransferase TerF from Chaunopycnis alba, exhibited similar substrate tolerance and regioselectivity. In vitro enzyme assays using purified recombinant enzymes TolF and TerF confirmed their capacity to catalyze prenylation of paxilline, ß-paxitriol, and terpendole I. Based on previous reports, terpendole I should be considered a native substrate. This work not only enhances our understanding of the molecular basis and product diversity of prenylation reactions in indole diterpene biosynthesis, but also provides insights into the potential of fungal indole diterpene prenyltransferase to alter their position specificities for prenylation. This could be applicable for the synthesis of industrially useful compounds, including bioactive compounds, thereby opening up new avenues for the development of novel biosynthetic strategies and pharmaceuticals. KEY POINTS: • The study characterizes TolF as a multiple prenyltransferase from Tolypocladium inflatum. • TerF from Chaunopycnis alba shows similar substrate tolerance and regioselectivity compared to TolF. • The research offers insights into the potential applications of fungal indole diterpene prenyltransferases.


Assuntos
Dimetilaliltranstransferase , Diterpenos , Hypocreales , Dimetilaliltranstransferase/metabolismo , Prenilação , Indóis/metabolismo , Diterpenos/metabolismo , Especificidade por Substrato
4.
Pharmacol Res ; 202: 107121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431091

RESUMO

Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.


Assuntos
Reabsorção Óssea , Clostridium , Osteoclastos , Propionatos , Humanos , Feminino , Camundongos , Animais , Osteoclastos/metabolismo , Receptor de Pregnano X/metabolismo , Reabsorção Óssea/metabolismo , Osteogênese , Estrogênios/metabolismo , Indóis/metabolismo , Hidrogéis , Ligante RANK/metabolismo , Diferenciação Celular
5.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490195

RESUMO

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Indóis/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico
6.
J Med Chem ; 67(4): 3004-3017, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38301029

RESUMO

NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.


Assuntos
Imunidade Inata , Proteína Adaptadora de Sinalização NOD1 , Proteína Adaptadora de Sinalização NOD2/metabolismo , Indóis/química , Indóis/metabolismo
7.
Cell Host Microbe ; 32(2): 151-153, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359796

RESUMO

Surging depression rates highlight the need for innovative strategies beyond the traditional focus on the brain. In this issue of Cell Host & Microbe, Cheng et al. uncover a role for the gut microbiota in depression through the intestinal receptor Grp35 and indole pathway, offering hope in fighting against depression.


Assuntos
Microbioma Gastrointestinal , Microbiota , Intestinos , Indóis/farmacologia , Indóis/metabolismo
8.
Eur J Med Chem ; 266: 116131, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215587

RESUMO

Heterocyclic compounds play a crucial role in the discovery of therapeutics. Alzheimer's disease (AD) is an unfathomable sporadic neurodegenerative disorder that involves multiple pathological pathways. The failure of current single-target small molecules to address AD's underlying causes has prompted interest in discovering multi-target directed ligands (MTDLs) to slow down the disease's progression. Herein we report the synthesis and biological evaluation of indole-piperidine amides as MTDLs for AD. The 5,6-dimethoxy-indole N-(2-(1-benzylpiperidine) carboxamide (23a) inhibits hAChE and hBACE-1 with IC50 values of 0.32 and 0.39 µM, respectively. The MTDL 23a is a mixed-type inhibitor of both hAChE and hBACE-1 with Ki values of 0.26 µM and 0.46 µM, respectively. The MD simulation studies revealed that both AChE and BACE-1 experience minor conformational changes on binding with 23a. In the PAMPA-BBB assay, analog 23a demonstrated CNS permeability, indicating the possibility for future investigation in preclinical models of AD.


Assuntos
Doença de Alzheimer , Colinesterases , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Desenho de Fármacos , Indóis/farmacologia , Indóis/metabolismo , Piperidinas , Relação Estrutura-Atividade , Amidas/química , Amidas/farmacologia
9.
J Pharm Biomed Anal ; 241: 115987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280235

RESUMO

To explore the metabolites of 5-Methoxy-N-isopropyl-N-methyltryptamine (5-MeO-MiPT) and unveil its toxicological effects, we examined its metabolic profiles using zebrafish and human liver microsome models. Employing ultra-high-performance liquid chromatography Q Exactive hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UPLC-QE-HRMS), we analyzed samples from intoxicated zebrafish and human liver microsomes. In the zebrafish model, we identified a total of six metabolites. Primary phase I metabolic pathways involved N-Demethylation and Indole-hydroxylation reactions, while phase II metabolism included Glucoside conjugation directly, Glucoside conjugation after Indole-hydroxylation, and Sulfonation following Indole-hydroxylation. In the human liver microsome model, nine metabolites were generated. Major phase I metabolic pathways encompassed N-Demethylation, 5-O-Demethylation, and N-Depropylation, N-Oxidation, Indole-hydroxylation, N-Demethylation combined with Indole-hydroxylation, and 5-O-Methylation-carboxylation. Phase II metabolism involved Glucoside conjugation after Indole-hydroxylation, as well as Glucoside conjugation after 5-O-Demethylation. Proposed phase I metabolites, such as 5-MeO-MiPT-N-Demethylation (5-MeO-NiPT) and 5-MeO-MiPT-Indole-hydroxylation, alongside the phase II metabolite OH&Glucoside conjugation-5-MeO-MiPT, were identified as effective markers for screening 5-MeO-MiPT intake. This study systematically delineates the phase I and II metabolites of 5-MeO-MiPT, confirming their pathways through in vivo and in vitro extrapolation. Additionally, inclusion of the parent drug itself and OH&Glucoside conjugation-5-MeO-MiPT could serve as valuable confirmation tools.


Assuntos
Microssomos Hepáticos , Serotonina/análogos & derivados , Triptaminas , Peixe-Zebra , Animais , Humanos , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Indóis/metabolismo , Biotransformação , Glucosídeos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos
10.
Xenobiotica ; 54(2): 83-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38164702

RESUMO

Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.


Assuntos
Acetilcolinesterase , Psoríase , Cobaias , Animais , Indóis/farmacologia , Indóis/metabolismo , Índigo Carmim , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Metab Eng ; 81: 100-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000548

RESUMO

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Assuntos
Escherichia coli , Índigo Carmim , Índigo Carmim/metabolismo , Escherichia coli/metabolismo , Indóis/metabolismo , Oxigenases de Função Mista/metabolismo
12.
Sci Total Environ ; 912: 169190, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092204

RESUMO

The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Alcaloides/toxicidade , Alcaloides/metabolismo , Cafeína/toxicidade , Cafeína/metabolismo , Indóis/metabolismo , Indóis/toxicidade , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
13.
Biosci Biotechnol Biochem ; 88(3): 316-321, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086614

RESUMO

When cultured anaerobically, Enterocloster sp. RD014215 was found to produce 1. Using nuclear magnetic resonance and mass spectroscopy, the planar structure of 1 was determined to be 3-hydroxy-3-(2-oxopropyl)indolin-2-one. The chirality of 1 was implied as S by comparing the optical rotation value of 1 with literature reports of the synthesized compounds. To our knowledge, this work represents the first discovery of the metabolite produced by Enterocloster strain. 1 exhibited inhibition of nitric oxide (NO) production, demonstrating a 50% inhibitory activity (IC50) of 34 µm for NO production by murine macrophage cells subjected to lipopolysaccharide stimulation.


Assuntos
Macrófagos , Óxido Nítrico , Humanos , Camundongos , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II , Macrófagos/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Lipopolissacarídeos/farmacologia
14.
Fitoterapia ; 172: 105772, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064922

RESUMO

Three new compounds phomtersines A-C (1-3) together with nine known compounds were isolated from the marine-derived fungus Phomopsis tersa FS441. Their structures were sufficiently established by spectroscopic methods, including extensive 1D and 2D NMR techniques and modified Snatzke's method. Moreover, compounds 1-12 were evaluated for cytotoxic and anti-inflammatory activities. As a result, phomtersine B (2) and the known compound 10 showed moderate cytotoxic activity against the four tested cell lines with IC50 values ranging from 20.21 to 36.53 µM, and phomtersine A (1) exhibited moderate inhibitory activity against LPS-induced NO production.


Assuntos
Antineoplásicos , Ascomicetos , Linhagem Celular Tumoral , Estrutura Molecular , Ascomicetos/química , Antineoplásicos/farmacologia , Indóis/metabolismo
15.
Bioorg Med Chem Lett ; 97: 129541, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952596

RESUMO

Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.


Assuntos
Precursores Enzimáticos , Metaloproteinase 9 da Matriz , Metaloproteinase 9 da Matriz/metabolismo , Precursores Enzimáticos/metabolismo , Matriz Extracelular/metabolismo , Indóis/farmacologia , Indóis/metabolismo , Metaloendopeptidases/metabolismo , Inibidores de Metaloproteinases de Matriz
16.
Enzyme Microb Technol ; 174: 110381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134734

RESUMO

Indigo, an economically important dye, could be biosynthesized from indole by catalysis of the styrene monooxygenase StyAB. To enhance indigo biosynthesis, the styAB gene and its transcription regulator gene styS/styR in styrene catabolism were cloned from Pseudomonas putida and coexpressed in Escherichia coli. The presence of the intact regulator gene styS/styR dramatically increased the transcriptional levels of styA and styB by approximately 120-fold in the recombinant strain SRAB2 with coexpression of styS/styR and styAB compared to the control strain ABST with solo expression of styAB. A yield of 67.6 mg/L indigo was detected in strain SRAB2 after 24 h of fermentation with 120 µg/mL indole, which was approximately 14-fold higher than that in the control strain ABST. The maximum yield of indigo was produced from 160 µg/mL indole in fermentation of strain SRAB2. However, the addition of styrene to the media significantly inhibited the transcription of styA and styB and consequent indigo biosynthesis in recombinant E. coli strains. Furthermore, the substitution of indole with tryptophan as the fermentation substrate remarkably boosted indigo production, and the maximal yield of 565.6 mg/L was detected in strain SRAB2 in fermentation with 1.2 mg/mL tryptophan. The results revealed that the regulation of styAB transcription by the two-component regulator StyS/StyR in styrene catabolism in P. putida was effective in E. coli, which provided a new strategy for the development of engineered E. coli strains with the capacity for highly efficient indigo production.


Assuntos
Escherichia coli , Índigo Carmim , Escherichia coli/genética , Escherichia coli/metabolismo , Triptofano , Indóis/metabolismo , Estireno/metabolismo , Oxigenases/genética , Oxigenases/metabolismo
17.
Br J Pharmacol ; 181(1): 162-179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594378

RESUMO

BACKGROUND AND PURPOSE: Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH: In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS: Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS: Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite Membranosa , Indóis , Lactobacillus , Receptores de Hidrocarboneto Arílico , Lactobacillus/fisiologia , Glomerulonefrite Membranosa/microbiologia , Triptofano/farmacologia , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
18.
BMC Plant Biol ; 23(1): 527, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904107

RESUMO

BACKGROUND: Strobilanthes cusia (Nees) Kuntze is a traditional medical plant distributed widely in south China. The indole compounds that originated from the plant are responsible for its pharmacological activities. However, the reason why indole ingredients are accumulated in this herb and how it is biosynthesized has remained largely unknown. RESULTS: In this study, metabolic and transcriptional profiling measurement experiments of different S. cusia organs were carried out to understand the underlying molecular basis of indoles' biosynthetic logic. A metabolic investigation demonstrated that the indoles are primarily accumulated mainly in aerial parts, particularly in leaves. RNA-seq was employed to reveal the organ specific accumulation of indoles in different S. cusia organs. Meanwhile, a flavin-dependent monooxygenase gene (ScFMO1) was found in S. cusia, and it has capacity to produce indoxyl from indole by the fermentation assay. Finally, we assessed the outcomes of transient expression experiment in tobacco and confirmed that ScFMO1 localizes in cytoplasm. CONCLUSIONS: Our results suggest that ScFMO1 plays a key role in biosynthesis of indoles (Indigo, indirubin, indican, etc.), it will be useful for illuminating the molecular basis of the medicinal indoles' biosynthesis and developing strategies for improving their yields.


Assuntos
Medicamentos de Ervas Chinesas , Indóis , Indóis/metabolismo , Plantas , Medicamentos de Ervas Chinesas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Compostos Orgânicos/metabolismo
20.
Org Lett ; 25(41): 7470-7475, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37797949

RESUMO

Indole terpenoids make up a large group of secondary metabolites that display an enticing array of bioactivities. While indole diterpene (IDT) and rarely indole sesquiterpene (IST) pathways have been found individually in filamentous fungi, here we show that both cluster types are encoded within the genome of Tolypocladium album. Through heterologous reconstruction, we demonstrate the SES cluster encodes for IST biosynthesis and can tailor IDT substrates produced by the TER cluster.


Assuntos
Diterpenos , Hypocreales , Terpenos , Família Multigênica , Hypocreales/genética , Diterpenos/metabolismo , Indóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...